PALINDROMES AND TWO-DIMENSIONAL STURMIAN SEQUENCES

Valérie Berthé
Institut de Mathématiques de Luminy, CNRS-UPR 9016
Case 907, 163 avenue de Luminy, F-13288 Marseille Cedex 9, France
e-mail: berthe@iml.univ-mrs.fr
and
Laurent Vuillon
LIAFA, Université Paris 7
2 pl. Jussieu, F-75251 Paris Cedex 05, France
e-mail: vuillon@liafa.jussieu.fr

Abstract

This paper introduces a two-dimensional notion of palindrome for rectangular factors of double sequences: these palindromes are defined as centrosymmetric factors. This notion provides a characterization of two-dimensional Sturmian sequences in terms of two-dimensional palindromes, generalizing to double sequences the results in [13]. Keywords: palindromes, double sequences, generalized Sturmian sequences, symbolic dynamics, combinatorics on words.

1. Introduction

This paper studies some properties of symmetry for the rectangular factors of a family of two-dimensional sequences obtained as a binary coding of a \mathbb{Z}^{2}-action defined on the one-dimensional torus $\mathbb{T}^{1}(=\mathbb{R} / \mathbb{Z})$ by two irrational rotations. More precisely, such a sequence $\left(U_{m, n}\right)_{(m, n) \in \mathbb{Z}^{2}}$ is defined on the alphabet $\{0,1\}$ as follows: consider a partition of the unit circle into two half-open intervals I_{0} and $I_{1} ;$ let $\alpha, \beta, \gamma \in \mathbb{R}$ with $\alpha \notin \mathbb{Q}$; we have

$$
\forall(m, n) \in \mathbb{Z}^{2},\left(U_{m, n}=0 \Longleftrightarrow m \alpha+n \beta+\gamma \in I_{0} \text { modulo } 1\right)
$$

We will consider in particular the case where I_{0} has length α and $1, \alpha, \beta$ are rationally independent. Such sequences can be considered as a generalization of Sturmian sequences. Recall that Sturmian sequences code the approximation of a line by a discrete line made of horizontal and vertical segments with integer vertices (see for instance [8] and the surveys [9, 17]). This two-dimensional generalization of Sturmian sequences has been introduced in $[23,6]$ and is closely connected (via a letter-to-letter

