Journal of Automata, Languages and Combinatorics **6** (2001) 2, 121–138 © Otto-von-Guericke-Universität Magdeburg

PALINDROMES AND TWO-DIMENSIONAL STURMIAN SEQUENCES

VALÉRIE BERTHÉ

Institut de Mathématiques de Luminy, CNRS-UPR 9016 Case 907, 163 avenue de Luminy, F-13288 Marseille Cedex 9, France e-mail: berthe@iml.univ-mrs.fr

and

LAURENT VUILLON

LIAFA, Université Paris 7 2 pl. Jussieu, F-75251 Paris Cedex 05, France e-mail: vuillon@liafa.jussieu.fr

ABSTRACT

This paper introduces a two-dimensional notion of palindrome for rectangular factors of double sequences: these palindromes are defined as centrosymmetric factors. This notion provides a characterization of two-dimensional Sturmian sequences in terms of two-dimensional palindromes, generalizing to double sequences the results in [13].

Keywords: palindromes, double sequences, generalized Sturmian sequences, symbolic dynamics, combinatorics on words.

1. Introduction

This paper studies some properties of symmetry for the rectangular factors of a family of two-dimensional sequences obtained as a binary coding of a \mathbb{Z}^2 -action defined on the one-dimensional torus $\mathbb{T}^1 (= \mathbb{R}/\mathbb{Z})$ by two irrational rotations. More precisely, such a sequence $(U_{m,n})_{(m,n)\in\mathbb{Z}^2}$ is defined on the alphabet $\{0,1\}$ as follows: consider a partition of the unit circle into two half-open intervals I_0 and I_1 ; let $\alpha, \beta, \gamma \in \mathbb{R}$ with $\alpha \notin \mathbb{Q}$; we have

 $\forall (m,n) \in \mathbb{Z}^2, \ (U_{m,n} = 0 \iff m\alpha + n\beta + \gamma \in I_0 \text{ modulo } 1).$

We will consider in particular the case where I_0 has length α and $1, \alpha, \beta$ are rationally independent. Such sequences can be considered as a generalization of Sturmian sequences. Recall that Sturmian sequences code the approximation of a line by a discrete line made of horizontal and vertical segments with integer vertices (see for instance [8] and the surveys [9, 17]). This two-dimensional generalization of Sturmian sequences has been introduced in [23, 6] and is closely connected (via a letter-to-letter