Journal of Automata, Languages and Combinatorics **10** (2005) 4, 439–464 © Otto-von-Guericke-Universität Magdeburg

ON THE LENGTH OF THE WADGE HIERARCHY OF ω -CONTEXT-FREE LANGUAGES ¹

OLIVIER FINKEL

Equipe de Logique Mathématique, U.F.R. de Mathématiques, Université Paris 7 2 Place Jussieu 75251 Paris cedex 05, France e-mail: finkel@logique.jussieu.fr

ABSTRACT

We prove in this paper that the length of the Wadge hierarchy of ω -context-free languages is greater than the Cantor ordinal ε_{ω} , which is the ω^{th} fixed point of the ordinal exponentiation of base ω . We show also that there exist some Σ^{0}_{ω} -complete ω -contextfree languages, improving previous results on ω -context-free languages and the Borel hierarchy.

 $Keywords: \omega$ -context-free languages; infinitary context-free languages; topological properties; Borel hierarchy; Wadge hierarchy; conciliating Wadge hierarchy

1. Introduction

In the sixties Büchi studied the ω -languages accepted by finite automata to prove the decidability of the monadic second order theory of one successor over the integers. Since then the so called ω -regular languages have been intensively studied, see [43, 31] for many results and references. The extension to ω -languages accepted by pushdown automata has also been investigated, firstly by Cohen and Gold, Linna, Nivat, see Staiger's paper [42] for a survey of this work, including acceptance of infinite words by more powerful accepting devices, like Turing machines. A way to investigate the complexity of ω -languages is to consider their topological complexity. Mc Naugthon's Theorem implies that ω -regular languages are boolean combinations of Π_2^0 -sets. We proved that ω -context-free languages (accepted by pushdown automata with a Büchi or Muller acceptance condition) exhaust the finite ranks of the Borel hierarchy, [16], that there exist some ω -context-free languages (ω -CFL) which are analytic but non Borel sets, [21], and that there exist also some ω -CFL which are Borel sets of infinite rank, [22].

On the other hand the Wadge hierarchy of Borel sets is a great refinement of the Borel hierarchy and it induces on ω -regular languages the now called Wagner

¹A short version of this paper appeared in the Proceedings of the International Workshop on Logic and Complexity in Computer Science held in honour of Anatol Slissenko for his 60^{th} birthday, Créteil, France, 2001, [19]