Journal of Automata, Languages and Combinatorics 11 (2006) 3, 279–298 © Otto-von-Guericke-Universität Magdeburg

ON THE DECIDABILITY OF MODEL-CHECKING FOR P SYSTEMS¹

ZHE DANG², CHENG LI²

School of Electrical Engineering and Computer Science, Washington State University Pullman, WA 99164, USA e-mail: {zdang,cli}@eecs.wsu.edu

OSCAR H. IBARRA³

Department of Computer Science, University of California Santa Barbara, CA 93106, USA e-mail: ibarra@cs.ucsb.edu

and

Gaoyan Xie 2,4

Dept. of Computer and Information Science, University of Massachusetts Dartmouth North Dartmouth, MA 02747, USA e-mail: gxie@umassd.edu

ABSTRACT

Membrane computing is a branch of molecular computing that aims to develop models and paradigms that are biologically motivated. It identifies an unconventional computing model, namely a P system, from natural phenomena of cell evolutions and chemical reactions. Because of the nature of maximal parallelism inherent in the model, P systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems. In this paper, we look at various models of P systems and investigate their model-checking problems. We identify what is decidable (or undecidable) about model-checking these systems under extended logic formalisms of CTL. We also report on some experiments on whether existing conservative (symbolic) model-checking techniques can be practically applied to handle P systems with a reasonable size.

Keywords: Membrane computing, P system, model-checking

1. Introduction

There has been a flurry of research activities in the area of membrane computing (a branch of molecular computing) initiated about five years ago by Gheorghe Paun [13].

¹A preliminary version of this paper appeared in Unconventional Computation 2005 ([6]).

 $^{^2\}mathrm{The}$ work by Zhe Dang, Cheng Li and Gaoyan Xie was supported in part by NSF Grant CCF-0430531.

³The work by Oscar H. Ibarra was supported in part by NSF Grant CCF-0430945.

⁴The work was done when the author was a PhD student at Washington State University.