INTERVALS OF PARTIAL CLONES CONTAINING MAXIMAL CLONES ¹

LUCIEN HADDAD

Département de Mathématiques et d'Informatique, Collège militaire royal du Canada boite postale 17000, STN Forces, Kingston, Ontario, K7K 7B4 Canada e-mail: haddad-l@rmc.ca

DIETLINDE LAU

Institut für Mathematik, Universität Rostock Universitätsplatz 1, 18055 Rostock, Germany e-mail: dietlinde.lau@uni=rostock.de

and

IVO G. ROSENBERG

Départment de Mathématiques et Statistique, Université de Montréal Montréal, Québec, H3C 3J7 Canada e-mail: rosenb@dms.umontreal.ca

ABSTRACT

Let $k \geq 2$ and \mathbf{k} be a k-element set. Denote $\operatorname{Op}(\mathbf{k})$ the set of all total functions on \mathbf{k} . We study the set \widehat{A} of all partial clones C on \mathbf{k} whose total component $C \cap \operatorname{Op}(\mathbf{k})$ is a given maximal clone A. First we recall and establish some general facts, then we completely describe the set \widehat{A} where A is a maximal clone determined by a central or an equivalence relation on \mathbf{k} . Furthermore we study a subset of \widehat{A} for which A is a maximal clone determined by a bounded order. Here the problem turns out to be quite complex. Finally, we show that \widehat{A} is finite whenever A is a maximal clone determined by a fixed-point-free permutation consisting of cycles of same length p, where p is a prime divisor of k. We also give a complete description of \widehat{A} in the cases p=2,3.

Keywords: Partial clones, maximal clones, intervals of partial clones

1. Introduction

Let $k \geq 2$ and \mathbf{k} be a k-element set. Denote by $\operatorname{Par}(\mathbf{k})$ the set of all partial functions on \mathbf{k} and let $\operatorname{Op}(\mathbf{k})$ be the set of all total functions on \mathbf{k} , that is $\operatorname{Op}(\mathbf{k})$ consists of all everywhere defined functions on \mathbf{k} . A partial clone on \mathbf{k} is a subset of $\operatorname{Par}(\mathbf{k})$ closed under composition and containing all the projections on \mathbf{k} . A partial clone contained

¹To memory of Professor Dietmar Schweigert (1940 – 2006)